CERN Accelerating science

How to access free of charge state-of-the-art accelerator testing facilities across Europe?

ARIES offers the opportunity to conduct testing at 14 European research facilities to project members through its Transnational Access programme at no cost to the user. The facilities from 5 different countries, provide equipment and administrative support in 5 separate domains: magnet testing, material testing, electron and proton beam testing, radiofrequency testing and plasma beam testing.

Who can apply? Access can be provided to selected teams composed of one or more researchers led by a User Group Leader. Leaders and the majority of users in the group must work in a country other than where the selected installation is located, except when accessing an international organisation or remotely accessing a facility.

Wondering which kind of equipment and infrastructures are available? All the details are on the ARIES website for you to find the best suited option for your research. You will be then invited to contact the facility coordinator of the chosen installation prior to completing a formal application and submit it to ARIES-TA@cern.ch. CERN, University of Uppsala, GSI, KIT, CEA, DESY, STFC, CNRS and University of Lund will provide you with further information on the feasibility of your project.

All the projects carried on through the programme must disseminate the results acknowledging the ARIES project.

 

Alessandro Bertarelli (CERN)
Workshop for extreme thermal management materials
8 Dec 2017

Workshop for extreme thermal management materials

Researchers gathered in Turin, Italy to discuss current and future work.

Several authors
CLIC technology lights the way to compact accelerators
5 Mar 2018

CLIC technology lights the way to compact accelerators

What if accelerators could be more compact and more cost-effective?

Mike Barnes (CERN)
First workshop on Pulse Power for Kicker Systems held at CERN
28 Jun 2018

First workshop on Pulse Power for Kicker Systems held at CERN

The PULPOKS 2018 workshop brought more than 40 participants to discuss the latest developments in the field of pulsed power for particle accelerators

ARIES first annual meeting in Riga

Participants to the ARIES 1st Annual Meeting met at RTU in Riga (Image: CERN)

From the 22nd to 25th of May, 2018, 112 participants joined the first Annual Meeting of the ARIES project hosted by Riga Technical University (RTU) in Riga, Latvia. 41 Beneficiaries from 18 EU Countries were represented to celebrate the first year of the project, which coincided with the 100 years of the creation of the State of Latvia at the end of World War I.

Professor Tālis Juhna, as Vice-Rector for Research at RTU, welcomed the participants and expressed his happiness to see the first Annual Meeting taking place in Riga, the first gathering of this kind for the project, after the Kick-Off held at CERN in 2017. He noted that, from the Project’s Governing Board he attended just before the opening session, more milestones than scheduled had already been reached, setting a promising pace for ARIES. He also touched upon the added-value for RTU to be part of the ARIES cooperation and the expertise that RTU, as an engineering powerhouse, can bring to the project and beyond.

Professor Toms Torims, Director of RTU Center of High Energy Physics and Accelerator Technologies, took the floor and shared, in an emotional stance: “It is difficult to talk when your dreams come true. Thank you for being here and for celebrating, beyond science, the 100 years of Latvia. If you like Latvia, we will like you!” Latvia is actively promoting the opportunities offered by its ecosystem to create great value for investments, in particular in the field of Research and Innovation (R&I). It took on board the challenge to position itself at a cross-road, in order to link its activities with major European R&I powerhouses.

Maurizio Vretenar, as ARIES Project Coordinator, welcomed the participants as well, and thanked RTU for hosting the event. He placed this Annual Meeting under the auspices of science, inviting all the attendees to focus on delivering value beyond generating deliverables. He reminded the audience of the level of ambition of the project:

  • 4 Pillars: Excellence, Access, Innovation and Sustainability
  • 18 Work Packages
  • 8 Networks
  • 5 Transnational Access facilities
  • 5 Joint Research Activities

2018 is an important year for particle physics as the deadline for the Call for input to the European Strategy Update is set for December. “This represents a great opportunity for creativity and vision development for particle accelerator science,” says Maurizio. “And ARIES has a particular role to play in exploring new ideas, besides the major programmes of FCC, ILC and CLIC. We can do it through disruptive thinking more than just extrapolation.” This is also why part of the programme was dedicated to novel ideas such as the gamma factory, the muon collider and innovative colliders based on laser and plasma technologies.

Already in EuCARD-2, a strong focus was put on accelerators’ applications. This is at the heart of ARIES, with initiatives such as the workshop on co-innovation held with industry in February 2018, to find new ways to work closer together. A Proof of Concept Fund is also available for small projects, in order to test the commercial viability of a research concept. 10 very good proposals were received and the evaluation process was just completed with the selection of four extremely promising innovative ideas. Read more about the winners of the ARIES Proof-of-Concept fund...

The project has gained visibility with the ARIES presentation video posted in February 2018, reaching more than 10 000 views on social media.

A tribute was also paid to Professor Enzo Palmieri of INFN Legnaro, who passed away this year and whose contributions were recognised by the community.

The Project Coordinator closed his introductory speech by highlighting that the most frequent word in the ARIES Description of Work is the verb WILL. And before the Annual Meeting went on with presentations from the Work Packages engaging the community all together, he invited the participants to reflect on how their work will open to the future of accelerators.

 

Mohammed Shahzad (University of Strathclyde)
Laser-wakefield accelerators for High-energy coherent Terahertz radiation
26 Jun 2018

Laser-wakefield accelerators for High-energy coherent Terahertz radiation

Paper just published in New Journal of Physics describes a promising pathway to more efficient radiation sources

Rama Calaga (CERN)
World’s first crabbing of a proton beam
26 Jun 2018

World’s first crabbing of a proton beam

The first test of the HL-LHC crab cavities to rotate a beam of protons was performed last month at CERN.

Athena Papageorgiou Koufidou, Livia Lapadatescu (CERN)
HIE-ISOLDE: challenges and future plans
15 Dec 2017

HIE-ISOLDE: challenges and future plans

HIE-ISOLDE advances the high energy frontier of the facility.

And the winners of the ARIES Proof-of-Concept fund are…

ARIES Proof-of-Concept fund was open from December 2017 to April 2018 (Image: CERN)

On the 14th of December 2017, the ARIES project launched a call for proposals to its Proof-of-Concept (PoC) fund, aiming at fostering innovation and enhancing the impact of accelerator technology in society. How? By offering a total funding of €200,000 for up to four projects based on accelerator science with clear potential to go beyond the realm of scientific research with particle accelerators. This funding program is designed to bridge the gap between the seed stages of research and full commercial application, therefore reducing the financial risks associated with early-stage innovation.

The goal is clear: the accelerator community should propose ideas and early-phase projects focusing on the possible societal and commercial applications of these ideas within fields such as medicine, energy, security, and any others of relevance where accelerator technology has great potential to deliver value.

ARIES manages this fund through a dedicated Work Package, WP14 Promoting Innovation, led by Marcello Losasso from the CERN Knowledge Transfer Group. WP14 is dedicated to foster technology development in key areas, strengthen relationships with commercial partners, and provide advice to ARIES members on intellectual property (IP), management, and licensing. The PoC funding has the vocation to investigate the commercial feasibility of a new concept, as well as identifying opportunities for partnerships, licences and IP positions, in a holistic approach to innovation.

Through a competitive two-step selection process, projects were shortlisted for interview based on the quality and potential impact, as described in their proposal. All 10 projects submitted to ARIES PoC were extremely interesting, well prepared and would have deserved proper support. However, in consideration of the available budget, only the four projects that scored highest were invited to present their proposal. This presentation took place on the 15th of June, in front of a specially appointed Project Evaluation Committee (EvCo). The EvCo, chaired by the WP14 Leader, Mr Losasso, was keen to assess not only the technical aspects of the proposals, but also the potential of turning the research outputs into spill-overs with commercial impact for other sectors. Special focus was given to the possibility of involving Business Incubators to create more exploitation opportunities for the projects and to engage with already established supply chains, including industrial partners.

The four projects presented to the EvCo were evaluated as extremely interesting given their potential applications.

Riga Technical University presented a wide collaborative project involving academic partners (Universities of Warsaw and Huddersfield), scientific laboratories (Fraunhofer and CERN), a commercial company (e-Beam) and two shipyards (Gdansk and Riga) and aimed to tackle the challenge of pollution generated by marine diesel exhaust gas, using electron beam accelerators.

The RHP company from Austria presented a project in collaboration with GSI, supported by 2 industrial partners from Malta (IMA Engineering) and Austria (ASMAG), aimed at preparing innovative composite materials, containing diamonds, with tailored thermophysical properties. In this case, applications are expected in the area of power electronic, laser and collimators for future accelerators.

Another project was presented by CEA, France, supported by an industrial partner (Zanon, Italy), focusing on the development of a novel technology for producing Superconducting Radio Frequency Cavity. The method, Atomic Layer Deposition, if proved successful, could dramatically impact the construction and operational cost of large accelerator projects, such as FCC and CLIC.

The University of Liverpool, together with D-Beam Ltd., industrial partner from UK, presented an innovative project aimed to develop an advanced optical imaging system. Applications are expected not only for beam diagnostic in light sources and synchrotrons, but also for video projectors and displays.

These four projects, given their outstanding quality and application potential, have eventually been proposed for award to the ARIES Steering Committee and to the Governing Board. The award is expected very soon and, within a few weeks, the projects can start their planned activities.

“We are delighted that the PoC fund generated so much interest and that 10 very good proposals were submitted” says Maurizio Vretenar, ARIES Project Scientific Coordinator, based at CERN in Switzerland. “It showcases the maturity of the accelerators ecosystem, to look beyond particle physics and explore a larger field of applications that can benefit society at an even bigger scale. We are all very excited to see how the four projects we selected will develop and deliver the expected impact they have been designed for.”

To be continued!  

Frank Marhauser (JLAB), Panos Charitos (CERN)
The first 802 MHz prototype cavities for CERN’s future circular collider
27 Jun 2018

The first 802 MHz prototype cavities for CERN’s future circular collider

JLab and CERN collaborate in the development of novel superconducting radio frequency (SRF) accelerator structures for future high-performance circular machines.

Isabel Bejar Alonso (CERN) , Panagiotis Charitos (CERN)
A bright future for HL-LHC
7 Dec 2017

A bright future for HL-LHC

The 7th HL-LHC annual collaboration meeting in Madrid reviewed the current progress and set the goals for next year.

Ubaldo Iriso (ALBA-CELLS)
Different techniques of emittance measurements for SLS and FELs
2 Mar 2018

Different techniques of emittance measurements for SLS and FELs

The status of different techniques and some new approaches of emittance measurements for SLS and FELs were analyzed in a topical workshop at ALBA.

Taking accelerators on board: Exploring unchartered waters with ARIES

Emission control has turned into the most important driving force for developments in the ship industry in line with the sustainable development goals that the UN set for the 21st century.  In the past, extensive R&D effort has been allocated to control harmful emissions from ships given that approximately 90% of all goods traded worldwide travel on commercial ships that mainly burn low-quality heavy oil. ARIES aims at extending the accelerator reach to societal applications, and it brought together regulating authorities, shipping companies and industries, universities and research laboratories to explore a new avenue to reduce exhaust gas emissions from maritime trade.

The aim is to develop new accelerator-based gas treatment technologies laying at the border between physics and chemistry, which are applicable and practical for ship operators while they guarantee a high level of safety and reliability.

The combustion of gases inside the diesel engines emits harmful gasses in the atmosphere, a fact that raises concerns especially close to highly populated areas and closed seas. As a result, restrictive regulations apply in many areas as is the case of the Baltic sea and soon in many of the US coastal areas. Moreover, pollutant gases can often spread within 400 km from the coastline, influencing the air quality within several hundreds of kilometers. To cope with continuously increasing environmental demands, gas emissions from existing ships’ engines have to be reduced and a new world-wide regulations will be implemented as of 2021. Combination of cleaner fuels, engine modifications, add-on retrofits and other measures can be used to reduce exhaust gases emissions.

The main harmful gasses emitted from commercial ships are nitrogen oxides (NOx) and sulphur oxides (SOx). Primary methods aim at reducing the formation of these gases by using costly low-sulphur fuels and improving the engine design and maintenance, or by adopting proper retrofitting devices, such as scrubbers and selective catalytic reactors. These technologies allow a reliable reduction of SO2 or of NOx, while no system allows eliminating both, and all suffer the drawbacks of high cost, large footprints, an impact in the efficiency of the engine and additional fuel consumption.

To reduce further possible emissions, we need to develop innovative approaches for treating the exhaust gases after the engine. Accelerators could produce beams of electrons at an energy of 300-500 keV that would interact with the emission gases and induce molecular excitation, ionization and dissociation breaking the larger NOx and SOx molecules making easier the suppression of the remaining gases in a small “scrubber” placed after the accelerator in the exhaust pipe, which washes out using seawater the polluting molecules.

The electron-beam treatment technology was first developed in Japan in the 1970s and was recently revived in Poland to reduce carbon emissions from its power plants. The developments took place at the Warsaw Institute of Nuclear Chemistry and Technology (INCT), which is a member of ARIES and holds a patent on this technology. As 90% of electricity in Poland is produced from coal combustion and hence reducing gases that contribute to air pollution has been a key issue. A full-scale electron beam accelerator facility allowed to treat flue gases from coal-driven power plants, leading to a significant reduction in emissions of sulfur dioxide, nitrogen oxides and polycyclic aromatic hydrocarbons. The same technique could also help us reduce emission gases from ships.

In this process, the gases are cooled to between 70°C and 90°C with a spray of water and then diverted into a reaction chamber. There the wet gases are exposed to low energy electron radiation from an accelerator, not much different apart the higher energy from the tubes found in old television sets. Ammonia is then added to neutralize the SO2 and NOx, causing them to change chemical form and become solid aerosols. A high efficiency machine gathers and filters these sticky particles, converting them into high-quality fertilizer with the remaining “clean” gases leaving through the chimney. Ship exhausts are different from power plant fumes, but an experiment at INCT treated with an electron beam fumes with the same composition as the exhausts of a ship engine. The results indicate that similar high-level cleaning efficiencies can be reached.  

During the workshop, participants shared their experience from engine designing, gave feedback from research conducted on test facilities, and discussed results from measurements on ships in operation. Moreover, they discussed how one could achieve in an economical fashion the required emission levels that could meet new international regulations. There was a wide consensus that this technology is very promising, but it still requires testing first on real ship engines onshore and later in a marine environment aboard a ship. Additional  R&D is required to fit the accelerator in the challenging environment of an engine room (or of a ship funnel!) as well as an economic analysis to highlight the financial advantages with respect to other solutions.

A key challenge for engineer designers is to ensure the highest level of safety and reliability of the equipment installed on ships, while taking into consideration the different types of applications on vessels operating around the world and emission control regulations between different regions.

All in all, this novel technique has the potential to reduce the marine diesel exhaust gas; a challenge that becomes particularly topical given the increasing need for transportation of goods and the tighter rules towards a greener environment. The meeting exemplified that the design and advancement of accelerators goes beyond fundamental physics and genuinely contributes to the goals of sustainable developments for the 21st century.

 

You can find more information about the meeting and a full list of the participants in the Indico page of the event.

 
Shane Koscielniak (TRIUMF), Tor Raubenheimer (SLAC)
Highlights from IPAC ’18
28 Jun 2018

Highlights from IPAC ’18

A selection of highlights from the results presented during IPAC18

Sabrina El yacoubi
How to access free of charge state-of-the-art accelerator testing facilities across Europe?
Panagiotis Charitos (CERN)
Discussing the next step for circular colliders
12 Dec 2017

Discussing the next step for circular colliders

The 2018 Future Circular Collider collaboration meeting will take place in Amsterdam, the Netherlands (9-13 April 2018).

Workshop for extreme thermal management materials

 

The ARIES project organised its first workshop for Work Package 17 (WP17) “PowerMat” in Turin, Italy over 27-28 October 2017. The event hosted 30 participants from several Laboratories, Universities, and small companies.

The main objective of WP17 is the development and investigation (through both simulations and experiments) of novel materials for extreme thermal management related to particle accelerators and other challenging applications.

Many lively discussions and fruitful exchanges took place during the five sessions of the workshop. Each session was dedicated to a specific task of WP17, with special input regarding ARIES WP14 “Promoting Innovation”, which operates synergistically with PowerMat to provide material specimens and samples to be characterized and tested.

The main goal of the workshop was the presentation and discussion of results related to the latest developments of novel and advanced materials based on carbon and diamond. Besides excellent thermomechanical properties, these materials are required to resist the long-term effects of radiation, in the harsh accelerator environment. In this respect, material characterization campaigns are performed both on pristine and irradiated samples.

The first session of talks considered the investigation of metal carbide-reinforced graphite and fibre-reinforced graphite, with specific regard to their thermomechanical, microstructural and ultra-high vacuum characteristics. These materials are used in Collimators and Beam Intercepting Devices (BID), and must be optimized for the challenges of future high-energy particle accelerators.

The workshop also dedicated talks to the discussion of dynamic tests of advanced materials, with specific attention to experiments performed at the CERN HiRadMat facility. Several experiments were presented, including preliminary results from the MultiMat experiment, which took place in October 2017. The reusable, rotatable barrel hosted in the test bench allowed the testing of 18 different materials, ranging from very low-density carbon foams to high-density tungsten alloy, and three thin-film coatings under the most intense and energetic proton pulses available from CERN Super Proton Synchrotron (SPS).

The target stations were equipped with strain gauges, pressure sensors and thermal probes in order to acquire the dynamic response of the materials and benchmark the numerical results of the simulations. The experiment was concluded with more than 2·1015 protons delivered on target. All the carbon-based materials survived the maximum intensities, with energy densities exceeding those expected in the HL-LHC. The online instrumentations worked very reliably, providing a wealth of data for post-processing. The first analyses indicate a good agreement with the numerical and analytical predictions.

Workshop attendees also reviewed recent results of radiation damage studies from GSI, CERN and Polimi; and to agree on a plan for future simulations and experiments at various facilities in Europe and USA.


Importantly, PowerMat aims to explore the possible societal applications of novel materials in challenging domains, such as advanced engineering, medical imaging, quantum computing, energy efficiency, aerospace, and thermal management. In this context, researchers discussed the development of diamond-reinforced composites for luminescence screens, as well as optimization paths and experiments.


The visit of the DYNLab in Politecnico of Turin (Image: M. Scapin/Polito)

Attendees were also able to visit Polito’s DYNLab, a comprehensive facility for material testing in quasi-static and dynamic conditions, which will characterize materials for PowerMat. In addition, the programme featured a visit to Polito’s Additive Manufacturing facilities and invited talks on several inspiring topics, including Advanced Joining Technologies.

The presentations and interaction during these two days allowed participants to plan a large number of future activities as well as strengthen or launch new collaborations. Partners will report on the progress of their activities at the next WP17 meeting, to be held at the ARIES 2018 Annual Meeting in Riga, Latvia.

Special thanks go to Lorenzo Peroni and Martina Scapin at Polito, for their organisation of an inspiring venue with a unique context and atmosphere.

***

Header image: Participants of the Workshop of ARIES WP17 PowerMat, 27-28th November 2017, Politecnico of Turin, Italy (Image: M. Scapin/Polito)

Panagiotis Charitos (CERN)
Discussing the next step for circular colliders
12 Dec 2017

Discussing the next step for circular colliders

The 2018 Future Circular Collider collaboration meeting will take place in Amsterdam, the Netherlands (9-13 April 2018).

Panos Charitos (CERN)
A big step towards the superconducting magnets of the future
28 Jun 2018

A big step towards the superconducting magnets of the future

FRESCA2 reaches an important milestone, a magnetic field of 14.6 T a record for a magnet with a “free” aperture

Panagiotis Charitos (CERN)
Science transcends boundaries
8 Dec 2017

Science transcends boundaries

European and Japanese collaboration in the framework of the FCC study was highlighted during Science Agora 2017

HiRadMat: testing materials under high radiation

What happens to materials when they are subjected to high levels of radiation? How do superconducting magnets behave when they encounter the high-intensity proton beams at the Large Hadron Collider (LHC)? How much damage can radiation do to a device? HiRadMat, the radiation testing facility at CERN, helps experimenters answer these questions and more.

Radiation affects the mechanical properties of solid materials often causing significant damage. Metal objects, for example, become harder and more brittle, raising the risk of operation problems and malfunctions. As such, materials and devices often used under harsh radiation conditions —such as at nuclear reactors or high-energy physics experiments— must be tested in a safe and controlled environment.

HiRadMat, an acronym for High Radiation to Materials, provides exactly this environment to researchers. At the facility, they can expose different materials to high-intensity pulsed proton and ion beams to calculate the damage limits of detectors and electronics of the LHC, as well as evaluate different options for radioactive targets and measure the performance of radiation resistant devices. Since its creation in 2010, HiRadMat has remained a unique facility of high demand, providing a wide range of high radiation testing possibilities.

In the spirit of international collaboration and open exchange of ideas, HiRadMat is available to experimenters from around the globe for a range of scientific purposes. It is part of the ARIES project, which aims to develop European particle accelerator infrastructures and also provides support for researchers to travel to and use the facility.

An experimental set-up in HiRadMat Tunnel (Image: CERN)

HiRadMat uses a proton beam extracted directly from the Super Proton Synchrotron (SPS) at 440 GeV, providing a maximum pulsed energy of 3.4 MJ, a comparable extraction to that of the LHC beam. The facility is situated in the West Area and takes beam extracted directly from the TI2 injection line to the LHC [1,2].  It provides pulsed proton beams from 1 bunch per pulse to 288 bunches per pulse, at a maximum energy of 1.2x1011 protons per bunch (equivalent ion beams can also be provided).

The facility contains three experimental tables. A Beam Television (BTV) has been installed upstream of experimental positions and provides all users with reliable, consistent beam spot information, i.e. beam position, beam stability and beam spot size.  Different optics are available depending on the positioning of the experiments, but a general 1σ r.m.s. beam radius of 0.5 – 2 mm is offered, with others available upon request.  Further details on the beam operation of HiRadMat can be found in the literature by Fabich et al. [3]

Since HiRadMat took its first proton beam in 2012, it has continued to provide irradiation testing to a variety of projects, including studies into novel materials for collimators, beam monitors and targets. It has continued to develop as a facility, providing improved logistics to experiments and related electronics equipment to ensure smooth operation throughout all projects. HiRadMat also offers an additional facility providing improved shielding for electronics required for the experiments, a surface laboratory and control centre.

If HiRadMat sounds like the perfect facility to test your materials, devices and products, please contact the HiRadMat team directly.

 

[1]  I. Efthymiopoulos et al. “HiRadMat:  A New Irradiation Facility for Material Testing at CERN”, Proceedings IPAC, 2011: 1665-1667.

[2]  C. Hessler et al. “Beam Line Design for the CERN HiRadMat Test Facility”, Proceedings PAC, 2009: 3796-3798.

[3]  Fabich et al. “First Year of Operations in the HiRadMat Irradiation Facility at CERN”, Proceedings IPAC, 2013: 3415-3417.

Panagiotis Charitos (CERN)
Taking accelerators on board: Exploring unchartered waters with ARIES
11 Dec 2017

Taking accelerators on board: Exploring unchartered waters with ARIES

ARIES-Industry event brings together experts on accelerator applications for ship exhaust gas treatment.

Romain Muller (CERN)
More bang from your beam: reimagining X-ray conversion
20 Jun 2018

More bang from your beam: reimagining X-ray conversion

A solution live from the Medtech:Hack @ CERN

Romain Muller (CERN)
ARIES first annual meeting in Riga
3 Jul 2018

ARIES first annual meeting in Riga

One year after the Kick-off, where does the project stand?

Workshop shines Light on Photon-Beam Interactions

Over 27-28 November 2017, 41 experts in gamma-gamma colliders, Compton sources, and Gamma factories came together for the 2017 Photon Beams Workshop, held at the University of Padua’s Botanical Garden.

The event makes the first topical workshop of the ARIES project’s Task 6.6 “Far Future Concepts & Feasibility”, which aims to study the options and practicality of next and future-generation particle accelerators. The technical agenda included presentations on accelerator design, beam commissioning, laser technology, Free Electron Lasers (FELs), experimental programmes, and fundamental physics questions, with reports on studies and experiences from across the globe.

The first big theme of the workshop was Compton sources. Pierre Favier (LAL Orsay) kicked off the event with a comprehensive overview of warm and SC linac-based and ring-based Compton backscattering sources from around the world, covering almost 10 orders of magnitude in photon rates, and photon energies between a few 10s of keV and a few GeV. At present, the ThomX and ELI-NP facilities are under construction in France and Romania, respectively.

Alessandro Variola, Cristina Vaccarezza, and Antonio Falone (INFN Frascati) reported in greater detail on the design and status of ELI-NP, including its remarkable 32-pass laser-pulse recirculator and its luminosity monitor.

Secondly, speakers focused on the theme of photon colliders: recalling the history of gamma-gamma colliders, Valery Telnov (BINP Novosibirsk) discussed the gamma-gamma collider options for linear colliders, highlighting the removal of the spent electron beam as one of the key problems, mitigated by crab crossing. Following this, Telnov proposed the extension the European XFEL at DESY, Hamburg to a photon collider using the spent beams.

Illya Drebot (INFN) presented machine designs and Monte-Carlo simulations for an even lower-energy (MeV class) Gamma-Gamma Collider. Physics motivations for such a collider were discussed by Edoardo Milotti (University of Trieste), who also pointed out the existence of narrow resonances with extremely high cross-section.

Chuang Zhang (IHEP) set out the plan for a 200x200 MeV gamma-gamma collider based on the BEPC injector, in Beijing. The IHEP photon collider could be operational already in four years from now.

Considering secondary/tertiary beam generation, Luca Serafini (INFN Milano) discussed collisions between photons and massive high-energy particles, and made a proposal to use the CERN SPS, LHC or FCC as a gamma source.

Going back up in energy, Frank Zimmermann (CERN) reviewed the conversion of the recirculating linac of the LHeC into a gamma-gamma Higgs Factory, SAPPHiRE. Recent innovations from Atoosa Meseck (HZB) include the occasional bypassing of one linac section, using fast kicker magnets, to avoid the need to a counter-rotating beam, and the use of a low-energy FELs for generating 350 nm photons at 20k kHz repetition rate.

For photon collisions at even higher energy, Eduardo Marin (CERN) presented the photon collider options and associated simulation results for the CLIC linear collider project. 

On the third theme of the workshop, two full workshop sessions were devoted to discussing the Gamma Factory.  Indeed, Witek Krasny (LPNHE Paris) presented an innovative proposal to convert the LHC into an extremely bright source of Gamma rays, with energies of up to 400 MeV, by exploiting the interaction of laser pulses and partially stripped ion beams. In addition, Krasny pointed out that a low-energy photon collider providing would be a powerful tool for axion searches in a promising range of energy.

Reyes Alemany (CERN) presented the experimental programme at the CERN SPS and LHC, which defines the path towards realizing the Gamma Factory.

Considering FELs, Vittoria Petrillo (University of Milano) analysed their use and possible advantages over standard lasers for the Gamma Factory, with particular reference to the impact of the characteristics of FELs on PSI excitation.

Luca Serafini then delivered two “messages in the bottle” for the Gamma Factory, concerning the loss in efficiency due to the laser and ion wave fronts and due to their respective energy spread.

Representing the atomic physics community, Dima Budker (University of Mainz) discussed the basics of the electronic excitation and decay of partially stripped heavy ions, referring to his and Max Zolotorev‘s study 20 years earlier.

Key elements for all three types of facility are lasers and high-finesse optical cavities, such as Fabry-Perot resonators, or FELs.

Discussing the state-of-the-art in Fabry-Perot resonators, Fabian Zomer (LAL) presented activities at the KEK ATF in Japan, with reference to Compton-based positron source for linear colliders. Indeed, LAL’s next project, ThomX , will use a Fabry-Perot resonator with 100-400 kW power level from the start.

Antoine Courjaud (Amplitude Systems) presented the state of the art in ultrafast lasers for accelerators, touching on custom solutions for science, burst laser setups, and cryogenic amplifiers. Commercial lasers providing pulse energies of 1 J at 100 Hz will be available in 2-3 years from now. Similarly, Igor Pogorelsky (BNL) expanded on CO2 lasers, detailing the construction of a 25 TW laser with chirped pulse amplification at the BNL ATF. The CO2 laser system will eventually reach 100 TW with 10 J per pulse and 100 fs pulse duration, thanks to nonlinear compression, self-chirping and self-focusing.

All participants unanimously voted for the repetition of such a topical workshop in Padua in the future.

Frank Marhauser (JLAB), Panos Charitos (CERN)
The first 802 MHz prototype cavities for CERN’s future circular collider
27 Jun 2018

The first 802 MHz prototype cavities for CERN’s future circular collider

JLab and CERN collaborate in the development of novel superconducting radio frequency (SRF) accelerator structures for future high-performance circular machines.

Graeme Burt (Lancaster University), Donna Pittaway (STFC), Trevor Hartnett (STFC) and Peter Corlett (STFC)
Daresbury security linac achieves 3.5 MeV
26 Jun 2018

Daresbury security linac achieves 3.5 MeV

Compact aviation cargo scanning linac successfully commissioned at STFC Daresbury Laboratory.

Ruben Garcia Alia (CERN)
RADECS 2017: radiation resistance for electronics
7 Dec 2017

RADECS 2017: radiation resistance for electronics

Addressing radiation effects with RADECS and RADSAGA