CERN Accelerating science

International School on Precision Studies for the AVA Network

Solving the mystery of the imbalance between matter and antimatter in the universe has been one of the greatest challenges in physics. Experiments using low energy antimatter give insight into some of the most fundamental questions in science. They allow probing symmetries and interactions in unprecedented detail. In order to perform these experiments, highly sophisticated facilities such as CERN’s antiproton decelerator rings AD and ELENA are required.

The Accelerators Validating Antimatter physics (AVA) project enables an interdisciplinary and cross-sector program on antimatter research. This project is an Innovative Training Network within the H2020 Marie Skłodowska-Curie Actions programme. The foundation of the AVA Network is the training and continued development of AVA Fellows who contribute to fundamental questions around antimatter.

The latest training, a week-long School on Precision Studies, was organised to take place in Prague (Czech Republic) at the end of March 2020. However, due to the travel restrictions in place as a result of the coronavirus pandemic it was no longer possible to hold this advanced school as planned. To keep a significant part of the school content, it was decided to run the meeting as an online event.

The virtual School was joined by more than 50 participants and saw lectures and topical talks given by world-leading experts. They presented the latest results in theoretical and experimental antimatter studies along with wider research in accelerator science and particle physics. The event started with a recap of the basics of beam handling and cooling techniques, instrumentation and particle trapping on the first day. This was complemented with an in-depth overview of the experimental programme at the Antiproton Decelerator (AD) facility at CERN where currently all of the low energy antimatter physics research is carried out. Presentations highlighted the state-of-the-art and the challenges associated with limited intensities, machine access and required precision.


The online school was joined by more than 50 participants. (Image credit: University of Liverpool)

The School continued by putting the AVA research programme into a wider context. This included ‘classic’ particle physics experiments, interferometry and quantum technologies. These talks helped understand the wider context in which precision studies are placed. Slides from all presentations, poster contributions and recordings from the talks can be viewed via the events indico page.

In the current landscape, connecting people online has become increasingly the norm. It allows continuity of meetings and events albeit in a different format. This presents an opportunity to overcome some of the challenges associated with remote working. The online format of this school successfully allowed interactive discussions benefiting from Zoom’s chat functionality. Whilst not a full replacement for the original school, the online event allowed speakers and participants to connect and share information in a way that was not done before within the AVA Network.

Professor Carsten P. Welsch, AVA Coordinator and Head of the Physics Department at the University of Liverpool (UK), said: “The presentations highlighted the current state-of-the-art in precision studies using low energy antimatter beams. They also clearly showed the numerous challenges from limited beam intensities, machine access and the required precision. The AVA research has helped significantly improve a number of key technologies for these studies and also paved the way for entirely new experiments. Whilst the School could not take the planned format on this occasion, it still offered an excellent opportunity for discussions and knowledge exchange.”

The invaluable help of FOTON and the Institute of Physics of the Czech Academy of Sciences for helping to organise the school is acknowledged.

Looking forward, the AVA Network will be co-organising the International Conference on Exotic Atoms and Related Topics, the 7th edition of the EXA conference series, which will take place in Vienna (Austria) next year. Latest news and information about upcoming events can be found on the AVA webpage.


The AVA project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721559.

Editorial Team
Accelerating News Readers Survey
25 Mar 2019

Accelerating News Readers Survey

With this survey we are trying to learn more about our audience and how we can improve in the future. It should take less than 5 minutes. Thank you!

Philippe Lebrun, JUAS Director
25th edition of Joint Universities Accelerator School
13 Mar 2018

25th edition of Joint Universities Accelerator School

Twenty-five years of training accelerator scientists and going from strength to strength

Panos Charitos (CERN)
ISOLDE's new solenoid spectrometer
21 Mar 2019

ISOLDE's new solenoid spectrometer

Novel experiments to study the evolution of nuclear structure, exotic nuclear shapes and the formation of elements made possible with ISOLDE's new solenoid spectrometer.

Academia-industry collaboration drives innovation

Co-innovation workshop focused on strategic R&D programme of future collider and the benefits for industry in terms of project involvement and product commercialisation.

A new particle collider requires pushing numerous technologies beyond their state of the art. This situation provides industry with powerful test-beds for future markets that come with a high publicity factor. Novel technologies and processes can be piloted with controlled effort engagement. Well-controlled environments allow advancing technologies under conditions that extend beyond conventional product requirements. SMEs are ideal partners to bring these technologies to maturity on the quality level, generating new markets and leading to improved products.

Around 100 researchers, academics and industry delegates from the UK and other EU countries joined an academia-industry Co-Innovation workshop in Liverpool, UK on 22 March 2019. The event explored the exciting opportunities that the technology R&D around the FCC study presents for industry involvement and joint R&D programmes and was supported by the EU-funded EuroCirCol project and that MSCA training networks of EASITrain, OMA and AVA.

Image 1. Workshop participants discussing a range of key technologies. (Image: University of Liverpool)

Discussions across a number of working groups were motivated by the Future Circular Collider (FCC) study, but not limited to this study or even particle accelerators at all – the aim was to identify common ground for joint R&D across disciplinary boundaries. 

Working groups were formed to discuss specific opportunities for co-innovation and funding and included for example superconducting magnet technologies which are also two key topics for EASITrain, cryogenics, civil engineering, detector development, radiofrequency technology, energy efficiency, novel materials and material processing techniques.

Image 2. An industry exhibition took place before the workshop to showcase latest technologies. (Image: University of Liverpool)

Short talks about FCC-related areas for innovation, examples of successful technology transfer projects at CERN, as well as current funding opportunities stimulated interesting discussions amongst the participants. All of these presentations are now available via the workshop homepage.

The workshop served as an ideal platform for networking across sector boundaries and opened a number of interesting discussions. Several areas were identified that provide an excellent basis for co-innovation, including resource-efficient tunnelling, transferring optimised purpose-built machine learning soft- and hardware from particle physics to industry, and detector R&D in terms of high speed, power  and material constraints, cooling, and data maximization. Notes from all working groups are currently being finalized and will be used to follow up on agreed R&D lines with the aim to setup joint funding bids between participants.

It is anticipated that the final applications of the new technologies that are being developed for a next generation collider will stretch far beyond the applications initially targeted. The World Wide Web, originally invited to support particle physics experiments, has just celebrated its 30th anniversary and is an outstanding example of how these technologies can impact on everyday lives.

There are many other successful examples of where innovations made for fundamental research are benefiting society - most of the time in completely unforeseen ways. The FCC study illustrates this in the brand-new film “Busy bees and might magnets – From the Higgs to Honey: What's all the Buzz about Particle Accelerators?” which was produced between CERN and the University of Liverpool.

 

 

The film was launched at the event in Liverpool is now available on YouTube.

P. Ferracin, E. Todesco (CERN)
Power tests of HL-LHC quadrupole
8 Oct 2018

Power tests of HL-LHC quadrupole

Successful results from the power test of the fourth short model of a Nb3Sn quadrupole for the High Luminosity upgrade.

Daniela Antonio (CERN)
Building on the community’s collective experience on accelerator communication
25 Mar 2020

Building on the community’s collective experience on accelerator communication

Members from the accelerator communication community gathered at CERN for the 2nd Accelerator Communication and Outreach workshop.

Panos Charitos (CERN)
A big step towards the superconducting magnets of the future
28 Jun 2018

A big step towards the superconducting magnets of the future

FRESCA2 reaches an important milestone, a magnetic field of 14.6 T a record for a magnet with a “free” aperture

AVA – Training (anti)matters

Antimatter experiments are at the cutting edge of science; however, they are very difficult to undertake as antimatter is produced at extremely high energies. The ELENA decelerator at CERN is designed to overcome these problems, catching and slowing antiprotons to energies as low as 0.1 MeV. To fully exploit this novel accelerator, it will be important to train a new researcher generation in experimental design and optimization, advanced beam diagnostics and novel low energy antimatter experiments. AVA is an Innovative Training Network within the H2020 Marie Skłodowska-Curie Actions created for that purpose. Five universities, eight national and international research centres and thirteen industrial partners are collaborating in this interdisciplinary program.

At the very heart of the AVA network is a series of established and bespoke training events running throughout the project lifespan. From 8th – 12th January 2018, the AVA Fellows attended a Researcher Skills School at the University of Liverpool. They were joined by a student cohort from LIV.DAT, an STFC-funded centre for doctoral training that focusses on challenges arising in Big Data Science. Such a collegiate approach has two distinct advantages: i) the advantages of scale – the costs of training can be shared to bring otherwise unaffordable opportunities to more people, and ii) it brings together trainees from a variety of disciplines to develop personal networks and start interdisciplinary collaborations.


Training at Liverpool – the original ‘red-brick’ University (Image credit: QUASAR Group).

The Researcher Skills School at Liverpool focused on developing skills essential for early stage researchers and included training in project management, peer review and intellectual property rights. A workshop on presentation skills held at The Cockcroft Institute included video recording presentations with feedback from both Fellows and trainers.


Highlights of the week at the University of Liverpool and the Cockcroft Institute (Image credit: QUASAR Group).

Professor Carsten Welsch, who leads both projects, commented, “Liverpool University has an outstanding track record in delivering bespoke postgraduate training courses. This Skills School follows a programme developed through previous training networks and was commended as EU success story by the European Commission as part of past project reviews.

The following week the AVA Fellows attended a bespoke Media Training at MediaCityUK, one of the UK’s premier creative hubs. Throughout their career, successful researchers will need to use professional media techniques to promote and advertise their research. This programme offered them the opportunity to develop these skills by producing their very own project video.

The week began with an overview of the creative process by hosts Carbon Digital before preproduction started. Storyboards were created and professional voice-over artists recorded scripts. The fellows learned about camera techniques and green screen filming and everyone had the opportunity to film and be filmed before the fellows decided amongst themselves who should star in the final cut. They had to consider how to communicate the scientific aims of the AVA project best to a broad and international audience. The postproduction process can be as intense and creative as preproduction and production combined. It offers dynamic opportunities to change the storyboard, soundscape and visuals. The Fellows actively engaged in postproduction to explain how antimatter is created at CERN, and how ELENA will help open up entirely new research opportunities.


Training with host Carbon Digital at MediaCityUK (Image credit: QUASAR Group).

Sue McHugh from Carbon Digital said, “It has been inspiring to see researchers from across the world come together to create such a high quality final film. This is an example of successful industry-academia collaboration which can only help improve the overall employment prospects of the researchers.

The AVA project film can be seen here.

After such an intense training fortnight, the AVA Fellows are now concentrating on their research until summer, when they will attend a week-long International School on Low Energy Antimatter Physics. This will be held between 25th - 29th June at CERN. and will be followed by hands-on training days on Detectors and Beam Diagnostics offered by Stahl Electronics and Bergoz Instrumentation, respectively.

The Summer School, open to all interested researchers, will address challenges in antimatter facility design and optimization, beyond state of the art beam diagnostics and advanced detectors, as well as novel antimatter experiments. In addition to lectures by research leaders, there will be study groups, a poster session and a dedicated industry session. There will also be opportunities for discussion and networking at evening events and tours of CERN’s unique accelerator facilities. 

Fiona Harden, Yacine Kadi, Nikolaos Charitonidis, Aymeric Bouvard
International HiRadMat Workshop
30 Sep 2019

International HiRadMat Workshop

The much-antecipated event took place in the summer of 2019 at CERN, with great success.

Ricardo Torres (University of Liverpool)
The Tale of Two Tunnels
10 Dec 2018

The Tale of Two Tunnels

Liverpool will be turned into a particle accelerator exhibition.

Athena Papageorgiou Koufidou, Livia Lapadatescu (CERN)
HIE-ISOLDE: challenges and future plans
15 Dec 2017

HIE-ISOLDE: challenges and future plans

HIE-ISOLDE advances the high energy frontier of the facility.

Physics of Star Wars: Science or Fiction?

Light sabres, hyper speed and droids – how do they all connect with the latest accelerator research? With the imminent launch of “The Last Jedi”, Professor Carsten Welsch, Head of Physics at the University of Liverpool and Head of Communication for the Cockcroft Institute, has explored the “Physics of Star Wars” in an event on 27th November designed to introduce cutting-edge accelerator science to hundreds of secondary school children, undergraduate and PhD students, as well as university staff.

The day started with a lecture which first presented iconic scenes from the movies to then explain what is possible with current technology and what remains fiction. For example, a lightsabre, as shown in the film, wouldn’t be possible according to the laws of physics, but there are many exciting applications using lasers. There is a link to advances in lasers and laser acceleration being studied by an international collaboration within the EuPRAXIA project. This programme is developing the world’s first plasma accelerator with industry beam quality. It uses a high intensity laser pulse to drive an electron beam and accelerate this to high energies. Applications in science or industry that are close to a light sabre include for example 3D printing of metals and laser cutting.

Professor Welsch said: “In the very first movie from 1977, the rebels have used proton torpedoes that make the Death Star explode as their lasers wouldn’t penetrate the shields. I linked that to our use of ‘proton torpedoes’ in cancer therapy. Within the pan-European OMA project we are using proton beams to target something that is hidden very deep inside the body and very difficult to target and destroy.”

 OMA Fellow Jacinta Yab explaining the use of ‘proton torpedoes’ in cancer therapy (Image credit: QUASAR Group)

 The light and dark side of the Force in Star Wars was an ideal opportunity to talk about matter and antimatter interactions which are currently being explored at CERN’s AD and ELENA storage rings, as well as within the brand-new Marie Sklodowska-Curie research network AVA. Finally, participants learned about how high energy colliders, such as the LHC, its high luminosity upgrade or a potential Future Circular Collider (FCC) as it is being studied within the EuroCirCol project, can provide fantastic opportunities to study the force(s).

High school students participating in hands-on activities during ‘Physics of Star Wars’ event. (Image credit: QUASAR Group)

After the lecture, all participants were given the opportunity to understand the science behind Star Wars through numerous hands-on activities in the university’s award-winning Central Teaching Laboratory. This included laser graffiti, augmented reality experiments with Star Wars droids and virtual accelerators using AcceleratAR, and even two full-scale planetariums which fully immersed participants into the world of Star Wars, deflecting charged particle beams using Helmholtz coils.

Professor Welsch and members of his QUASAR Group had the kind permission of Lucasfilm to use film excerpts; these were complemented by Lego Star Wars models, a real cantina as found in the movies, storm troopers and even Darth Vader himself! Many photographs from the exciting day can be found on Twitter at https://twitter.com/livuniphysics

Lucasfilm had no involvement in the preparation or delivery of the event which was organised only by staff and students from the University of Liverpool.

 

Header image: Prof Carsten Welsch presenting the ‘Physics of Star Wars’ (Image credit: QUASAR Group)

Shane Koscielniak (TRIUMF), Tor Raubenheimer (SLAC)
Highlights from IPAC ’18
28 Jun 2018

Highlights from IPAC ’18

A selection of highlights from the results presented during IPAC18

Rama Calaga (CERN)
World’s first crabbing of a proton beam
26 Jun 2018

World’s first crabbing of a proton beam

The first test of the HL-LHC crab cavities to rotate a beam of protons was performed last month at CERN.

Fiona Harden, Yacine Kadi, Nikolaos Charitonidis, Aymeric Bouvard
International HiRadMat Workshop
30 Sep 2019

International HiRadMat Workshop

The much-antecipated event took place in the summer of 2019 at CERN, with great success.