CERN Accelerating science

Academia-industry collaboration drives innovation

Co-innovation workshop focused on strategic R&D programme of future collider and the benefits for industry in terms of project involvement and product commercialisation.

A new particle collider requires pushing numerous technologies beyond their state of the art. This situation provides industry with powerful test-beds for future markets that come with a high publicity factor. Novel technologies and processes can be piloted with controlled effort engagement. Well-controlled environments allow advancing technologies under conditions that extend beyond conventional product requirements. SMEs are ideal partners to bring these technologies to maturity on the quality level, generating new markets and leading to improved products.

Around 100 researchers, academics and industry delegates from the UK and other EU countries joined an academia-industry Co-Innovation workshop in Liverpool, UK on 22 March 2019. The event explored the exciting opportunities that the technology R&D around the FCC study presents for industry involvement and joint R&D programmes and was supported by the EU-funded EuroCirCol project and that MSCA training networks of EASITrain, OMA and AVA.

Image 1. Workshop participants discussing a range of key technologies. (Image: University of Liverpool)

Discussions across a number of working groups were motivated by the Future Circular Collider (FCC) study, but not limited to this study or even particle accelerators at all – the aim was to identify common ground for joint R&D across disciplinary boundaries. 

Working groups were formed to discuss specific opportunities for co-innovation and funding and included for example superconducting magnet technologies which are also two key topics for EASITrain, cryogenics, civil engineering, detector development, radiofrequency technology, energy efficiency, novel materials and material processing techniques.

Image 2. An industry exhibition took place before the workshop to showcase latest technologies. (Image: University of Liverpool)

Short talks about FCC-related areas for innovation, examples of successful technology transfer projects at CERN, as well as current funding opportunities stimulated interesting discussions amongst the participants. All of these presentations are now available via the workshop homepage.

The workshop served as an ideal platform for networking across sector boundaries and opened a number of interesting discussions. Several areas were identified that provide an excellent basis for co-innovation, including resource-efficient tunnelling, transferring optimised purpose-built machine learning soft- and hardware from particle physics to industry, and detector R&D in terms of high speed, power  and material constraints, cooling, and data maximization. Notes from all working groups are currently being finalized and will be used to follow up on agreed R&D lines with the aim to setup joint funding bids between participants.

It is anticipated that the final applications of the new technologies that are being developed for a next generation collider will stretch far beyond the applications initially targeted. The World Wide Web, originally invited to support particle physics experiments, has just celebrated its 30th anniversary and is an outstanding example of how these technologies can impact on everyday lives.

There are many other successful examples of where innovations made for fundamental research are benefiting society - most of the time in completely unforeseen ways. The FCC study illustrates this in the brand-new film “Busy bees and might magnets – From the Higgs to Honey: What's all the Buzz about Particle Accelerators?” which was produced between CERN and the University of Liverpool.

 

 

The film was launched at the event in Liverpool is now available on YouTube.

Panagiotis Charitos
FCC collaboration publishes its Conceptual Design Report
28 Mar 2019

FCC collaboration publishes its Conceptual Design Report

FCC study publishes a conceptual design report demonstrating the feasibility of the different options explored for post-LHC circular colliders.

Panos Charitos (CERN)
ISOLDE's new solenoid spectrometer
21 Mar 2019

ISOLDE's new solenoid spectrometer

Novel experiments to study the evolution of nuclear structure, exotic nuclear shapes and the formation of elements made possible with ISOLDE's new solenoid spectrometer.

Cristian Pira, Oscar Azzolini, Giorgio Keppel, Silvia Martin, Fabrizio Stivanello (INFN)
Seamless accelerating cavities
20 Mar 2019

Seamless accelerating cavities

Superconducting radiofrequency accelerating cavities are the heart of modern particle accelerators and one of the key challenges for the FCC study.

AVA – Training (anti)matters

Antimatter experiments are at the cutting edge of science; however, they are very difficult to undertake as antimatter is produced at extremely high energies. The ELENA decelerator at CERN is designed to overcome these problems, catching and slowing antiprotons to energies as low as 0.1 MeV. To fully exploit this novel accelerator, it will be important to train a new researcher generation in experimental design and optimization, advanced beam diagnostics and novel low energy antimatter experiments. AVA is an Innovative Training Network within the H2020 Marie Skłodowska-Curie Actions created for that purpose. Five universities, eight national and international research centres and thirteen industrial partners are collaborating in this interdisciplinary program.

At the very heart of the AVA network is a series of established and bespoke training events running throughout the project lifespan. From 8th – 12th January 2018, the AVA Fellows attended a Researcher Skills School at the University of Liverpool. They were joined by a student cohort from LIV.DAT, an STFC-funded centre for doctoral training that focusses on challenges arising in Big Data Science. Such a collegiate approach has two distinct advantages: i) the advantages of scale – the costs of training can be shared to bring otherwise unaffordable opportunities to more people, and ii) it brings together trainees from a variety of disciplines to develop personal networks and start interdisciplinary collaborations.


Training at Liverpool – the original ‘red-brick’ University (Image credit: QUASAR Group).

The Researcher Skills School at Liverpool focused on developing skills essential for early stage researchers and included training in project management, peer review and intellectual property rights. A workshop on presentation skills held at The Cockcroft Institute included video recording presentations with feedback from both Fellows and trainers.


Highlights of the week at the University of Liverpool and the Cockcroft Institute (Image credit: QUASAR Group).

Professor Carsten Welsch, who leads both projects, commented, “Liverpool University has an outstanding track record in delivering bespoke postgraduate training courses. This Skills School follows a programme developed through previous training networks and was commended as EU success story by the European Commission as part of past project reviews.

The following week the AVA Fellows attended a bespoke Media Training at MediaCityUK, one of the UK’s premier creative hubs. Throughout their career, successful researchers will need to use professional media techniques to promote and advertise their research. This programme offered them the opportunity to develop these skills by producing their very own project video.

The week began with an overview of the creative process by hosts Carbon Digital before preproduction started. Storyboards were created and professional voice-over artists recorded scripts. The fellows learned about camera techniques and green screen filming and everyone had the opportunity to film and be filmed before the fellows decided amongst themselves who should star in the final cut. They had to consider how to communicate the scientific aims of the AVA project best to a broad and international audience. The postproduction process can be as intense and creative as preproduction and production combined. It offers dynamic opportunities to change the storyboard, soundscape and visuals. The Fellows actively engaged in postproduction to explain how antimatter is created at CERN, and how ELENA will help open up entirely new research opportunities.


Training with host Carbon Digital at MediaCityUK (Image credit: QUASAR Group).

Sue McHugh from Carbon Digital said, “It has been inspiring to see researchers from across the world come together to create such a high quality final film. This is an example of successful industry-academia collaboration which can only help improve the overall employment prospects of the researchers.

The AVA project film can be seen here.

After such an intense training fortnight, the AVA Fellows are now concentrating on their research until summer, when they will attend a week-long International School on Low Energy Antimatter Physics. This will be held between 25th - 29th June at CERN. and will be followed by hands-on training days on Detectors and Beam Diagnostics offered by Stahl Electronics and Bergoz Instrumentation, respectively.

The Summer School, open to all interested researchers, will address challenges in antimatter facility design and optimization, beyond state of the art beam diagnostics and advanced detectors, as well as novel antimatter experiments. In addition to lectures by research leaders, there will be study groups, a poster session and a dedicated industry session. There will also be opportunities for discussion and networking at evening events and tours of CERN’s unique accelerator facilities. 

Anaïs Schaeffer
AWAKE: More plasma = more acceleration
4 Dec 2019

AWAKE: More plasma = more acceleration

A new type of plasma cell, known as a helicon cell, is being studied for AWAKE. The aim is to generate a greater quantity of plasma in one go. AWAKE Run 2 will start after the LS2.

Rama Calaga (CERN)
World’s first crabbing of a proton beam
26 Jun 2018

World’s first crabbing of a proton beam

The first test of the HL-LHC crab cavities to rotate a beam of protons was performed last month at CERN.

L Marco Zanetti (INFN), Frank Zimmermann (CERN)
Discussing a future strategy for muon colliders
8 Oct 2018

Discussing a future strategy for muon colliders

Discussing status and ongoing efforts in light of the upcoming European Strategy update.

Physics of Star Wars: Science or Fiction?

Light sabres, hyper speed and droids – how do they all connect with the latest accelerator research? With the imminent launch of “The Last Jedi”, Professor Carsten Welsch, Head of Physics at the University of Liverpool and Head of Communication for the Cockcroft Institute, has explored the “Physics of Star Wars” in an event on 27th November designed to introduce cutting-edge accelerator science to hundreds of secondary school children, undergraduate and PhD students, as well as university staff.

The day started with a lecture which first presented iconic scenes from the movies to then explain what is possible with current technology and what remains fiction. For example, a lightsabre, as shown in the film, wouldn’t be possible according to the laws of physics, but there are many exciting applications using lasers. There is a link to advances in lasers and laser acceleration being studied by an international collaboration within the EuPRAXIA project. This programme is developing the world’s first plasma accelerator with industry beam quality. It uses a high intensity laser pulse to drive an electron beam and accelerate this to high energies. Applications in science or industry that are close to a light sabre include for example 3D printing of metals and laser cutting.

Professor Welsch said: “In the very first movie from 1977, the rebels have used proton torpedoes that make the Death Star explode as their lasers wouldn’t penetrate the shields. I linked that to our use of ‘proton torpedoes’ in cancer therapy. Within the pan-European OMA project we are using proton beams to target something that is hidden very deep inside the body and very difficult to target and destroy.”

 OMA Fellow Jacinta Yab explaining the use of ‘proton torpedoes’ in cancer therapy (Image credit: QUASAR Group)

 The light and dark side of the Force in Star Wars was an ideal opportunity to talk about matter and antimatter interactions which are currently being explored at CERN’s AD and ELENA storage rings, as well as within the brand-new Marie Sklodowska-Curie research network AVA. Finally, participants learned about how high energy colliders, such as the LHC, its high luminosity upgrade or a potential Future Circular Collider (FCC) as it is being studied within the EuroCirCol project, can provide fantastic opportunities to study the force(s).

High school students participating in hands-on activities during ‘Physics of Star Wars’ event. (Image credit: QUASAR Group)

After the lecture, all participants were given the opportunity to understand the science behind Star Wars through numerous hands-on activities in the university’s award-winning Central Teaching Laboratory. This included laser graffiti, augmented reality experiments with Star Wars droids and virtual accelerators using AcceleratAR, and even two full-scale planetariums which fully immersed participants into the world of Star Wars, deflecting charged particle beams using Helmholtz coils.

Professor Welsch and members of his QUASAR Group had the kind permission of Lucasfilm to use film excerpts; these were complemented by Lego Star Wars models, a real cantina as found in the movies, storm troopers and even Darth Vader himself! Many photographs from the exciting day can be found on Twitter at https://twitter.com/livuniphysics

Lucasfilm had no involvement in the preparation or delivery of the event which was organised only by staff and students from the University of Liverpool.

 

Header image: Prof Carsten Welsch presenting the ‘Physics of Star Wars’ (Image credit: QUASAR Group)

Steinar Stapnes (CERN)
Updates to the CLIC performance studies
12 Dec 2019

Updates to the CLIC performance studies

The CLIC study collaboration proposes new ways of increasing the luminosity performance at 380 GeV at modest additional cost and power consumption. These updates are summarized in a recent CLIC note.

Chris Edmonds (University of Liverpool)
Tactile Collider
13 Mar 2018

Tactile Collider

Sensory exploration of LHC science for children with visual impairment

Panagiotis Charitos (CERN)
Discussing the next step for circular colliders
12 Dec 2017

Discussing the next step for circular colliders

The 2018 Future Circular Collider collaboration meeting will take place in Amsterdam, the Netherlands (9-13 April 2018).